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A method for computing the desired eigenvalues and corresponding 
eigenvectors of a large-scale, nonsymmetric, complex generalized 
eigenvalue problem is described. This scheme is primarily intended for 
the normal mode analysis and the stability characterization of the 
stationary states of parameterized time-dependent partial differential 
equations, in particular, when a finite element method is used for the 
numerical discretization. The algorithm, which is based on the previous 
work of Saad, may be succintly described as a multiple shift-and-invert, 
restarted Arnoldi procedure which uses reorthogonalization and 
automatic shift selection to provide stability and convergence, while 
minimizing the overall computational effort. The application and 
efficiency of the method is illustrated using two representative test 
problems. 0 1992 Academic Press, Inc. 

1. INTRODUCTION 

In this paper, we consider some numerical algorithms 
that are useful in the analysis of the dynamical behavior of 
physical systems that are described by parameterized non- 
linear partial differential equations. The steady states of 
such systems are governed by certain linearized perturba- 
tion equations, whose discretization by a finite element 
method leads to a large matrix eigenvalue problem. As 
discussed in detail below, the overall dynamics is then 
dominated by the few modal perturbations whose eigen- 
values have the largest real parts. In practice, for realistic 
applications, a great deal of program development and large 
computational resources are required in order to obtain 
these stability determining eigenvalues. Therefore, it is 
important to develop algorithms that are general and 
robust, for use without modification on a wide range of 
problems. Equally, it is important for algorithms to be well- 
matched to the capabilities of current high-performance 
vector and parallel computers, which will inevitably be 
required for tackling such applications. 

The routines in EISPACK and other general-purpose 
software libraries have some well-known limitations that 
make them inappropriate for these intended problems. 

First, these routines require random access to the data, and 
therefore work best with small matrices that lit entirely in 
core memory. Second, they provide no particular computa- 
tional saving if the matrices are sparse and if only a small 
fraction of the eigenspectrum is desired. Third, the entire 
computation has to be repeated from scratch for each 
separate problem instance, and no use is made of any infor- 
mation that may have been generated from a previous com- 
putation at a nearby value of the problem parameters. 
Fourth and finally, these routines are incapable of realizing 
the potential performance of current high-performance 
computers without non-trivial modifications, making it 
worthwhile to look at alternative methods that, at least 
conceptually, might vectorize or parallelize more readily. 

In this context, the use of spectral methods for the 
discretization of continuous eigenvalue problems would 
appear to be quite attractive [S]. Here the choice of global 
basis functions for the discretization leads to small dense 
matrices (rather than the large, sparse matrices for finite 
element discretization of equivalent accuracy), so that the 
use of conventional eigenvalue software can be quite 
appropriate. However, these matrices frequently have a 
block non-zero structure that is not well exploited by algo- 
rithms intended for fully dense matrices. We note that the 
advantages of a finite element discretization lie in the much 
greater flexibility in handling boundary conditions and 
irregular problem geometries and, generally speaking, in the 
reduced programming effort required for each new applica- 
tion. 

Recently, some other investigators have also considered 
the use of matrix eigenvalue algorithms for finite element 
applications of related interest. Jackson [7] studied the 
exterior two-dimensional flow of an incompressible fluid 
past bodies of various shapes, using a subspace iteration 
method to compute the eigenvalues in order to delineate the 
regimes of flow instability. Christodolou and Striven [l] 
considered the stability behavior of free surface flows 
in viscous thin films by tracking the potentially unstable 
eigenvalues, using a scheme based on Arnoldi’s method as 
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described by Saad [12]. A third distinct approach is the 
unsymmetric Lanczos algorithm, which has been used by 
Cullum, Kerner, and Willoughby [2] in a plasma physics 
application. These three matrix eigenvalue algorithms have 
the property that they provide “iterative” approximations 
to several eigenpairs simultaneously, rather than one 
at a time as in the usual power or inverse iteration 
methods [ 141. 

Of the three competing algorithmic strategies described 
above, we have chosen the Arnoldi-based scheme as 
representing the best compromise in terms of numerical 
accuracy, algorithmic efficiency, and programming sim- 
plicity between the other two methods. In our implementa- 
tion, we have enhanced the basic procedure in various ways 
over the previous work, in order to improve its performance 
and utility for our intended applications. These modilica- 
tions include the use of automatic shift selection heuristics, 
for avoiding stagnation, and for guiding the algorithm 
towards computing the eigenvalues of greatest interest, as 
well the use of a simple inverse iteration procedure for 
extracting the eigenvectors of specified computed eigen- 
values at low cost. In addition, our implementation is based 
on the use of complex arithmetic, which simplifies the 
analytical effort and programming for a large class of rele- 
vant applications (although it has some other ramifications 
too, as discussed below). 

The primary motivation for this research derives from the 
fact that classical methods in stability analysis are limited 
to the consideration of “model” problems with various 
simplifications in the boundary conditions and problem 
geometries [3]. For more realistic problems, difhculties 
arise when the perturbation equations are complicated and, 
even more notably, when the base stationary state itself can 
only be computed numerically. The two test examples con- 
sidered in the paper, though well-studied, exemplify each of 
these situations. In the case of the Orr-Sommerfeld equa- 
tion, the base stationary state is very simple, but the pertur- 
bation equations, after some reduction, form a fourth-order 
eigenvalue differential equation with variable coefficients. In 
the case of the chemical reactor problem, the computation 
of the base state requires the solution of a complicated non- 
linear problem, and much care is required in selecting 
an appropriate discretization and numerical scheme for 
computing this itself, even setting aside the complexity 
of analyzing the perturbation equations. These two test 
problems are quite representative of the more challenging 
open problems that one might want to solve, and good 
previous results are available for them that can be used 
to validate the correctness of our present computations. 
We have made no attempt in this work to try and obtain 
new results for these test applications, although to our 
knowledge, some of the computational results in Section 4 
are quite new. 

To fix ideas regarding these applications, consider a 

continuous physical system whose description is given by 
an operator evolution equation of the form 

au 
Yg=mJ, I4 fi), on 52, (1.1) 

where U belongs to a suitably normed space of functions on 
the domain a, with time-independent boundary conditions 
on &! The nonlinear operator 9 is assumed to depend 
only on U and its spatial derivatives. The scalar p is a dis- 
tinguished problem parameter (such as the Reynolds num- 
ber in the Navier-Stokes equations, or the Rayleigh number 
in the Boussinesq equations) by varying which the nature of 
the solutions U of (1.1) is changed. The remaining fixed 
parameters in the problem are denoted by fi, and these will 
be omitted below in order to simplify the notation. 

The finite element discretization of ( 1.1) yields a discrete 
evolution equation of the form 

where u is a vector of nodal values approximating the 
function U, f is a nonlinear vector function, and M is the 
finite element “mass” matrix. For fixed p, the stationary 
solution U of (1.2) will satisfy the equation 

.ftv p)=O. (1.3) 

One approach to solving (1.3) is Newton’s method. Starting 
with an initial guess u’, we successively compute 

J(U”, p) 627 = -f( U”, p), (1.4) 

u -n+I=~n+&", (1.5) 

where J denotes the Jacobian matrix, until the desired con- 
vergence is obtained. This iteration will diverge unless a 
good initial guess is available, but this difficulty can be over- 
come by a continuation method using the parameter p; i.e., 
after the Newton iteration in (1.4) and (1.5) has converged, 
we solve 

(1.6) 

and a good initial guess for Newton’s method at a nearby 
parameter value ,D + 6~ is then given by 

UO(p + 6p) = U(p) + 8p g ai (1.7) 

The stability of the stationary state U(p) can be analysed 
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by taking small disturbances of the form W? and 
linearizing in (1.2) to obtain 

Jw = aMw. (1.8) 

A necessary condition for the stability of the stationary state 
is that all the eigenvalues of (1.8) have negative real parts, 
SO that the small modal perturbations will decay (sufficient 
conditions for stability require the consideration of finite- 
amplitude perturbations and cannot be obtained by the pre- 
sent approach). Parenthetically, we note that the perturba- 
tion vector w must satisfy homogenous boundary condi- 
tions, since the non-homogeneous terms in the boundary 
conditions of the original evolution equation are exactly 
satisfied by the stationary solution U itself. 

In stability problems, the primary interest is often in 
determining the value of the parameter p at which the least 
stable or “leading” eigenvalue has its real part just becoming 
zero, indicating that the corresponding eigenmode is on the 
verge of becoming unstable. If the imaginary part of the 
leading eigenvalue is simultaneously Lero, then we have a 
regular bifurcation at this parameter value, and a new 
branch of stationary solutions will emerge from the current 
solution branch. The appearance of a regular bifurcation 
can in fact be deduced without an explicit eigenvalue 
analysis, by monitoring the determinant of the Jacobian 
matrix, which must change sign whenever an eigenvalue 
passes through zero. In particular, if a direct elimination 
method is used in (1.4) to compute the stationary solution 
U, then the determinant can be easily evaluated as the 
running product of the pivots during elimination. However, 
if an iterative method is used then it is no longer straight- 
forward to monitor the sign of the determinant of this 
Jacobian matrix, and an explicit eigenvalue analysis may 
then be necessary to detect the occurrence of a regular 
bifurcation. The other way in which a stationary state can 
lose stability is through a Hopf bifurcation, with a leading 
complex conjugate pair of eigenvalues just crossing the 
imaginary axis as p is varied, giving rise to time-periodic 
solutions bifurcation from the stationary solution branch. 
This situation, again, can only be detected by an explicit 
eigenvalue analysis. 

2. BACKGROUND 

An excellent overview of several aspects of the finite ele- 
ment matrix eigenvalue problem has been given by Strang 
and Fix [ 131, particularly for the case when the matrices J 
and M are real-symmetric with M positive-definite. There, 
however, the eigenvalues are all real, and the Sturm 
sequence property provides a powerful tool for identifying 
and obtaining all the eigenvalues in a given real interval. In 
addition, the eigenvectors are all mutually orthogonal, and 

any set of such eigenvectors will form a linearly independent 
basis for the invariant subspace spanned by them. These two 
properties are most valuable for computational algorithms, 
but they do not carry over to the present class of problems. 
However, there are many other important issues that can 
guide the selection, implementation, and efficiency of the 
solution algorithms for our applications, and we list the 
most important among them below: 

l The matrices J and M can be real, but the complex case 
is of great interest in stability applications. In particular, 
this latter possibility arises whenever “travelling wave” 
perturbations are allowed. These perturbations will break 
the spatial symmetry of the base stationary solution, and the 
Jacobian matrix for the eigenvalue problem (1.8) is not the 
same as that used in (1.4) to solve for the stationary solution 
by Newton’s method. These complex-valued travelling wave 
disturbances can be phase shifted by the spatial derivative 
operators in the perturbation equations, leading to the 
appearance of complex coefficients in the eigenvalue 
problem (see, for example, the Orr-Sommerfeld equation in 
Section 5). Although in practice, it is always possible to for- 
mulate an equivalent real eigenvalue problem, this requires 
additional analysis and effort, so that it is most helpful to 
have programs that can handle the complex-valued case. 

l The matrix M will in general be singular and non-inver- 
tible, with several rows having identically zero entries. This 
situation can arise from two contexts. First, this may be due 
to the absence of time derivative terms in some equations of 
the continuous problem formulation (a good example is the 
incompressibility condition on the fluid velocities in the 
Navier-Stokes equations). Second, and more commonly, 
this is due to the requirement that the perturbation vectors 
satisfy certain homogenous essential boundary conditions. 
These are most easily enforced by first generating the 
matrices J and M in the usual way, and then subsequently 
modifying them by setting all the entries in th rows of J and 
M corresponding to these boundary conditions to zero, 
except for the diagonal entry in J which is set to unity. This 
modification will lead to the required boundary conditions 
being automatically enforced in the solution procedure. In 
summary, therefore, the matrix M will have its rank reduced 
by the total number of discrete constraint equations and 
essential boundary conditions. 

l The matrices J and A4 will be large and sparse, and by 
appropriately ordering the nodal unknowns in the finite 
element mesh, it is possible to obtain matrices of 
small bandwidth. These structural characteristics must be 
exploited for efficiently storing these matrices and for 
performing various matrix operations using them. 

. If J and M are complex (which as mentioned earlier, is 
a case of considerable importance in applications) then the 
use of complex arithmetic in the implementation of the algo- 
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rithm cannot be avoided. However, the case when the 
matrices are real can also arise (as for example, in the 
chemical reactor example of Section 5) for which the eigen- 
values and eigenvectors appear as complex conjugate pairs. 
Then with some additional programming it is possible to 
develop procedures for the basic iterative eigenvalue algo- 
rithms using only real arithmetic [ 141. This will reduce the 
storage and computational costs in this part of the algo- 
rithm, but for reasons described below, will increase the 
oomputational cost in the shift-and-invert factorization. 
Parlett and Saad [lo] have developed “hybrid” methods 
for real matrices that combine the performance benefits of 
both worlds. We have chosen to use complex arithmetic 
based procedures throughout, even for real-valued matrices, 
primarily because of the programming complexity of the 
real arithmetic-based algorithms, but we briefly note a 
technical issue that is relevant to this choice as well. For 
example, Cullum, Kerner, and Willoughby [2] have noted 
that the use of complex arithmetic in the Lanczos procedure 
lessens the possibility of the appearance of small divisors 
that lead to the numerical breakdown of the algorithm. 
Similarly, a source of numerical error in the Arnoldi itera- 
tion is the use of Gram-Schmidt orthogonalization for com- 
puting the Krylov subspace basis vectors (the more accurate 
modified Gram-Schmidt procedure cannot be used because 
of the incremental way in which this subspace is generated). 
Here, likewise, the use of complex arithmetic will provide 
some numerical robustness that can mitigate some of the 
increased storage and arithmetic costs. 

l The finite element discretization of continuous eigen- 
value problems often leads to the appearance of a large 
number of “spurious” eigenmodes in the discrete problem 
with corresponding eigenvalues having very large modulus. 
These spurious eigenmodes have no counterpart in the 
original continuous problem and are therefore extremely 
sensitive and ill-conditioned with respect to the discretiza- 
tion. This is a most important consideration, because the 
“factorization-free” versions of the iterative algorithms men- 
tioned earlier, although computationally inexpensive, are 
only efficient in computing the extreme and well-separated 
eigenvalues in the complex plane. In our applications these 
are invariably the spurious eigenvalues. Even otherwise, the 
eigenvalues of greatest interest in applications are frequently 
located in the interior region of the spectrum. In stability 
problems, for example, these are the eigenvalues that either 
grow most rapidly or decay most slowly. While these eigen- 
values do lie on the periphery of the spectrum in some sense, 
they are not necessarily the ones whose convergence is most 
favored in the factorization-free versions of any of these 
algorithms. 

l In a practical application, the required eigenvalue com- 
putations will be performed in an “inner” loop, while in an 
“outer” loop the problem parameters are varied in order to 

map out the solution space. Therefore, an extrapolation 
procedure can be used to estimate the region of the complex 
plane that contains the desired eigenvalues and to enhance 
the convergence of the numerical algorithm for computing 
these eigenvalues. 

We now review the basic ideas behind the algorithm 
keeping in mind the six important issues that we have out- 
lined above. First, a shift-and-invert transformation is used, 
so that (1.8) is rewritten in the form 

Kw=(J-AM)-‘Mw=~w, (2.1) 

where the shift II is a fixed complex number. This transfor- 
mation has three very useful properties. First, the original 
generalized problem is transformed to a standard eigen- 
value problem which has the same eigenvectors, but whose 
eigenvalues 6 are given by 

1 (J=- 
a--A’ (2.2) 

Second, by suitably choosing the shift II in the region of the 
complex plane which contains the eigenvalues of greatest 
interest, these are then mapped outwards in (2.2), so that 
the corresponding eigenvalues of K will have the largest 
modulus and the greatest separation and will therefore be 
the fastest to converge when the usual iterative algorithms 
are used. Third, by the same token, the “spurious” or infinite 
eigenvalues of (1.8) are mapped to the origin in the 
spectrum of (2.1), making them relatively benign in the 
transformed problem. 

Since the solution algorithm for (2.1) described below 
requires only the product of the matrix K with a given vec- 
tor, the shift-and-invert transformation can be applied by 
computing the LU factors of J - AM. For complex J and M, 
using partial pivoting, the cost of computing this factoriza- 
tion is at most N,Ni in complex arithmetic, where N, and 
Nb are the matrix order and bandwidth, respectively. 
However, if real arithmetic is used, then a matrix of order 
2N, and bandwidth 2N, is obtained, and the computational 
cost for the factorization is increased by a factor of two, 
assuming that each complex arithmetic operation is equiva- 
lent to four real arithmetic operations (the actual ratio that 
we measured on a SUN 4/280 workstation was around 4.5). 
For large scale problems, the overall computational 
requirement will be dominated by the cost of this matrix 
factorization, so that the use of a complex arithmetic-based 
procedure for this is strongly recommended. We note that 
this is the case even when J and M are real matrices, since 
the shift 1 is complex in general, so that the LU factors of K 
will be also be complex. 

The action of K on a vector that is required in each 
iteration of the algorithm can be computed with one matrix- 
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vector product using A4 whose cost is 2N, N,, and a forward 
and back solve using the LU factors whose cost is at most 
N, N, and 2N, N,, respectively. The overall cost of this step 
is therefore within a small constant factor of the equivalent 
step without a shift-and-invert transformation. However, 
since the initial LU factorization can be expensive, and must 
be recomputed for each new choice of the shift value, it is 
best to try and compute as many eigenvalues as possible 
with a given shift, even if this requires a few additional 
iterations of the basic iterative eigenvalue algorithm. 

The method that is used to compute some of the eigen- 
values of the matrix K is a variant of the restarted Arnoldi 
method as described by Saad [ 121, in which the iteration 
vectors are maintained orthogonal to the invariant sub- 
space of the converged eigenvectors. This reorthogonaliza- 
tion allows the Arnoldi algorithm to compute subdominant 
eigenvalues by arresting the tendency of the algorithm to 
repeatedly converge towards the dominant eigenvectors 
that have already been computed. In addition, in this way, 
the necessity for repeated factorizations of J- ;IM is 
reduced, since frequent new shifts are not required in 
order to uncover these subdominant eigenvalues. In effect, 
the cost of reorthogonalization is amortized by a more 
favorable convergence for the subdominant eigenvalues and 
by the fewer shifts that will be required to map out the 
spectrum. 

Let us consider the case when an invariant subspace of 
order p for K has already been computed, so that 

KU,= U,R,, (2.3) 

where the columns of the unitary matrix lJ, form a basis for 
this subspace and R, is a complex upper triangular matrix, 
which represents the projection of K in this basis. The 
column vector basis for U, can be written in the form 

up= [u, z42 ... up]. 

Now consider the matrix 

(2.4) 

v,= [u, u2 ... II,], (2.5) 

whose columns form a basis for the Krylov subspace 
XJK, m, U,') that is orthogonal to the computed invariant 
subspace Up. We therefore write 

= U,HKU, U,HKV, R, U,"KV, 
' 0 V,HKV,,, = 0 H, I[ 1 

(2.6) 

The matrix on the right-hand side, which we denote as 
qw?zY consists of a p xp block R, which upper triangular 
(due to Up being a Schur basis) and a m x m block H,,, 

which is Hessenberg (due to V,,, being an Arnoldi basis) 
The eigensystem of fip + m is given by 

= 6(Rp) 6(H,)][xp *,l, (2.7 

where X,, an upper triangular p xp matrix with unil 
diagonal represents the eigenvectors of R,, and X, which 
is a m x m matrix, represents the eigenvectors of H,. Ir 
addition, 6(R,) consists of the diagonal elements of R, 
corresponding to the already converged eigenvalues, while 
6(H,) consists of the approximations to the remaining 
eigenvalues. Finally, the Ritz vectors Y,+ m of K can be 
computed from the relation 

Y p+m= Cup Vml 2p+m= CUJ, VJ,], (2.8) 

with the last step following from (2.7). There is no need to 
transform the first p columns, since this will only reproduce 
the already converged eigenvectors. The remaining m 
columns contain approximations to the eigenvectors of K, 
and it is only necessary to transform those column vectors 
of X, that correspond to converged eigenvectors. For- 
tunately, these converged eigenpairs can be identified, prior 
to performing this transformation, from the result 

(2.9) 

so that the convergence test can be applied to the right-hand 
side in (2.9), without the need for explicitly evaluating all 
the Ritz vectors, in order to compute the eigenpair residuals 
on the right-hand side. This is very similar to the equivalent 
procedure used for detecting convergence in the symmetric 
Lanczos algorithm. Parenthetically, we note that it is 
important to compute the eigenpairs to high accuracy, since 
the use of reorthogonalization means that any errors will 
strongly affect the convergence and accuracy of subsequent 
eigenpairs. 

The original invariant subspace Up is enlarged by com- 
puting additional basis vectors from any newly converged 
eigenvectors by orthogonalization. However, each newly 
converged eigenvector is already orthogonal to the basis 
vectors of the original invariant subspace U,,, since from 
(2.8) such an eigenvector must be a linear combination 
of vectors in Up'. Therefore, it is only necessary to 
reorthogonalize the newly computed eigenvectors against 
each other in enlarging the basis for U,. 

The difficulty with the usual Arnoldi method is the 
indeterminate nature of its storage requirement, so that in 
practice a fixed number of iterations is carried out, and if a 
sufficient number of eigenpairs have not converged, then 
the method is reinitialized with a new starting vector. If 
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necessary, the value of the shift can also be changed at this 
point, without affecting the basis vectors of the invariant 
subspace r/, in (2.3), although the matrix R, will change 
and must be recomputed. 

After a sufficient number of eigenpairs have converged, 
the output from the algorithm will consist of the Schur 
matrices U, and R,. The matrix R, will contain the eigen- 
values of K in its diagonal entries, from which the eigen- 
values of the original problem can be obtained using the 
transformation in (2.2). Frequently, only one or two of these 
eigenvalues are of interest, and an efficient method for com- 
puting the eigenvector corresponding to any specific eigen- 
value is inverse iteration. For example, to compute the 
eigenvector corresponding to the diagonal element Rii = 6, 
we partition the matrix in the form 

R,= (2.10) 

where r and s are column vectors of length (i - 1) and 
(p - i ), respectively. With an accurate eigenvalue estimate, 
a single application of the inverse iteration procedure is 
sufficient to obtain a converged eigenvector. Therefore, we 
solve the small, dense, upper triangular system 

(RI,-8Z)y= -r, (2.11) 

from which the corresponding eigenvector wi is obtained as 

wi= [u, u2 ... Ui] Y [I 1 . (2.12) 

Note that the right-hand side of (2.12) is consistent with the 
partitioning of matrix R, in (2.10). 

3. ALGORITHM DESCRIPTION 

A formal description of the algorithm is given below. The 
flop count estimates for the important steps in it are also 
given alongside in square brackets. This is followed by a 
brief discussion of some of the implementation details. 

1. Initialization 
l starting shift A. 
l eigenpair convergence tolerance tol. 
l number of desired eigenpairs ntot. 
l Krylov subspace dimension mdim, where 

mdim > ntot. 
l total number of inner Arnoldi iterations maxits. 
l maximum number of allowable consecutive inner 

Arnoldi iterations without a converged eigenpair stagits. 
l Set p = 0, m = mdim. 

2. Assemble the matrices J and M. Choose a starting 
vector u,. 

3. Compute J - AM, and compute its LU factorization, 
[2N,N, + N,Ni]. 

4. If p # 0, and the shift value 
R, the projection of K in the 
CSPN,Nb + 2P2N,1. 

5. Restarted Iterations. 

has changed, recompute 
invariant subspace U,, 

(a) If p # 0, orthonormalize u, against the computed 
Schur basis vectors ul, u2, . . . . u,. Then set v1 c u,. 

(b) Inner Arnoldi iteration. Forj = 1 to m do: 

i. 
ii. 

. . . 
111. 

iv. 

V. 

Compute fi, + 1 = (.Z- ;1M)-’ Mu,, [SmN,N,]. 
Project out the computed Schur basis vectors 
from cjfl, [4mpN,]. 
Compute tij + 1 tfij+l-C:=IHk,jVk, where 
H,, j = I$‘+ 1 vk, [4m*N,]. 
Compute fl=Hj+I,j=~~~i+,~~ and set uj+,+- 
tij+ l/B. 
End do. 

(c) Compute eigenvalues 8 and eigenvectors xi of the 
Hessenberg matrix H of order m using the EISPACK 
routine COMQR2, [O(m3) J. 

(d) Check residuals and compute 1, the number of 
additional eigenpairs that have converged in this inner 
Arnoldi iteration. 

(e) Backtransform the I converged eigenvectors xi 
of H to obtain the corresponding Ritz vectors yi of 
K, [2mlN,]. 

(f) Enlarge the Schur basis set U, and the projection 
matrix R, from the 1 converged Ritz vectors, [412N,]. 

(g) Set p +- p + 1, m +- m - 1. Ifp > ntot, exit to step 7. 
(h) If the number of consecutive inner iterations 

without converged eigenpairs is greater than stagits, exit to 
step 6. 

(i) If the total number of inner Arnoldi iterations is 
greater than maxits, exit to step 6. 

(j) Compute a new starting vector u, for the next 
inner Arnoldi iteration as a suitable linear combination of 
the unconverged Ritz vectors. 

(k) Go to step 5(a). 

6. Compute a new shift value for the next set of 
computations. 

7. Ifp > ntot, go to step 2. This test is made in the calling 
program to which the control is returned so that the default 
value for the new proposed shift can be modified to a user 
specified quantity, if so desired. 

8. Identify the desired eigenvectors, and compute them 
by inverse iteration using the Schur matrices U, and R,, 
respectively. 

9. End. 
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The matrix factorization in step 3, and the forward and 
back solves required in each invocation of step 5(b), are 
carried out using the ZGBFA/ZBGSL combination in 
LINPACK for banded complex matrices. The matrix J is 
overwritten by its LU factors and must therefore be saved or 
regenerated if step 2 is to be executed again with a different 
value of the shift i. The matrix assembly is carried out in the 
calling program so that the module implementing the algo- 
rithm does not have to be modified for each individual 
application. In the inner Arnoldi iteration, much of the 
arithmetic involves the use of the level 1 BLAS subroutines 
ZDOTC and ZAXPY. These routines use loop unrolling 
and other optimizations to reduce the indexing overhead 
and promote register usage on scalar computers, and 
equivalent routines optimized for vector architectures will 
be quite efficient because they involve long vector operands 
that are accessed with unit stride. 

In step 5(e), as mentioned earlier, only the converged 
eigenvectors found in 5(d) need to be backtransformed. In 
practise, however, it is also useful to obtain some of the 
nearly converged Ritz vectors in order to construct a good 
starting vector for the next outer loop. In step 5(f), the 
newly converged Ritz vectors are mutually orthogonalized 
and then added to the previous Schur basis, by overlaying 
the storage provided for the original Krylov basis set. In 
addition, by appropriately decrementing the size of the 
Krylov basis set in the next Arnoldi iteration, this overlaid 
storage is no longer required, so that the overall storage 
requirement of the procedure remains fixed. 

In step 5(g), the criterion that is used to compute the 
starting vector is based on weighting each unconverged 
Ritz vector in the proportion of the product of the inverse 
of its residual, and the inverse of the distance of the corre- 
sponding approximate eigenvalue from the chosen shift. The 
first factor in this weighting is intended to further accelerate 
the convergence of the dominant eigenvalues, so that they 
may be quickly deflated out. The second factor, which is 
apparently arbitrary, is motivated by the observation that, 
particularly when the shift is poorly chosen, the restarted 
Arnoldi iteration can produce converged eigenvalues that 
are quite distant from the shift. This leads to two difficulties 
in the present context. First, these distant eigenvalues are 
possibly spurious, and it is clearly undesirable to be 
reorthogonalizing Krylov subspaces against spurious eigen- 
vectors. Second, as shown below, the prospective shifts for 
the subsequent Arnoldi iterations are selected from among 
the “good” unconverged eigenvalues from some previous 
iterations, and any systematic procedure for doing this can 
be disrupted by extreme changes of the shift value in the 
complex plane. For these two reasons, it is best to strongly 
damp out the components of the Ritz vectors of these eigen- 
values in the starting vector for the Arnoldi iteration, in this 
way to hopefully inhibit their convergence. Of course, other 
weighting functions can be used here, including those 

involving some positive power of this inverse separation and 
may prove to be even more effective in accomplishing the 
required damping. 

Another aspect of the restarted Arnoldi iteration is that 
stagnation can occur with several iterations producing 
essentially no new converged eigenpairs. One situation 
when this potentially can arise is when a shift is located too 
close to an eigenvalue. This eigenvalue will of course con- 
verge rapidly, but its proximity to the shift will affect the 
subsequent progress of the Arnoldi iteration, so that even 
with reorthogonalization little information is obtained from 
these iterations to assist in the convergence of the subdomi- 
nant eigenvalues. In step 5(h), if a check indicates that 
several successive iterations have produced no new con- 
verged eigenpairs, then further iteration is continued only if 
the residuals indicate that convergence is possibly imminent 
for some eigenpairs. However, if this situation persists, then 
selected “nearly converged” eigenvalues are placed in an 
internal buffer for use as possible future shift values, and the 
routine exits with a suggestion for a new shift value to be 
used in the next outer loop. 

The buffer that is used to store the prospective shifts is 
maintained as a circular queue, and in step 6 the entry at the 
head of this queue is returned on output as the next 
proposed shift. By transferring the program control to the 
calling routine at this point, a decision can be made, based 
on any extraneous information, to either accept this new 
value, or to modify it to another alternative. The queue 
management strategy can be customized to the needs of the 
application. For example, a FIFO (first-in, first-out) queue 
will lead to the spectrum being mapped out in a radial 
fashion from the initial shift value. The most useful strategy 
for our purposes was to rank the prospective shifts by the 
decreasing magnitude of their imaginary parts, and to queue 
them accordingly, so that the shift selection is biased 
towards the region containing the stability-determining 
eigenvalues. 

The possibility of stagnation in the shift selection proce- 
dure also cannot be overlooked, with several successive 
shifts being so close to each other that essentially no new 
information is obtained by using them. Note that each new 
shift value that is used requires that the matrix factorization 
be recomputed, and this is potentially the most expensive 
part of the computation. One strategy that we have used to 
avoid closely spaced shifts is to partition the region of the 
complex plane encircling the current shift in a number of 
radial sectors and to include only the nearest prospective 
shift values in each such sector into the queue. The use of 
an intermediate number of partitioning sectors is recom- 
mended here, in order to strike a balance between 
preventing stagnation on the one hand and inadvertently 
excluding some worthwhile directions for the movement of 
the shift, on the other hand. 

The shift selection strategies described above are based on 



the work of Cullum, Kerner, and Willoughby [2], who A. Orr-Sommerfeld Equation 
have proposed using “nearly converged” eigenvalues for this 
purpose as described above. Our modifications are intended 

The Orr-Sommerfeld equation describes the stability of 

to avoid closely spaced shifts and to bias the shift selection small two-dimensional perturbations of the form 

to the desired region of the complex plane. Their scheme can 
also be used as a default, if matrix factorizations are fj(x) exp[icc(z - at)] (4.1) 

inexpensive and if location of the computed eigenvalues is of 
no particular consequence. to the stream function of a base shear flow V(x) between 

After the specified number of converged eigenvalues is two parallel plates of infinite extent located at x = +_ 1, 

obtained, the input to step 8 will consist of the partial Schur respectively. This equation, which is relevant to the onset 

matrices U, and R, of K, computed at the most recently and development of turbulence in channel flows [3], is 

used value of the shift. A list of converged eigenvalues, that given by 

are backtransformed to that for the original unshifted 
problem is also returned. This list can be scanned and the 

-!& [(is”” - 2a*(v + cr4q!J J 

eigenvector for any desired entry in it can be computed by 
inverse iteration. This requires the solution of a small dense, + [(U-a)(&‘-a*(b)- U”(b] =o, (4.2) 

complex, upper triangular matrix system, and this is carried Q=d’=O, at x= dl. (4.3) 
out using a modified version of the LINPACK routine 
ZTRSL. Here R denotes the Reynolds number, and M and CJ denote 

The choice of the band matrix format is not essential to the streamwise wavenumber and the complex wave speed 
the algorithm, and with trivial modifications to the of the perturbation. The unstable waves are those with 
program, any other alternative sparse matrix format may Im(a) > 0, and this definition is different from that given in 
be used, as long as suitable routines are provided for Section 1, but is used here to maintain consistency with the 
performing the matrix factorization, triangular solves, and work of previous investigators on this problem. The two 
matrix-vector multiplications. In particular, for large-scale relevant base velocity profiles are the plane Poiseuille flow 
“out-of-core” applications, the LINPACK band matrix U,, and the plane Couette flow U,, which are respectively 
routines will not be efficient without further modification. given by 
A good alternative in this case is the frontal method, which 
is more economical in its core storage and I/O requirements. &=1-x2, u, = x. (4.4) 

Here, the assembly of the matrix J- %M is overlapped with 
the factorization. The same strategy can be used to compute The weak form of (4.2) is obtained by taking test 

the matrix-vector product involving M without ever functions w E Xi( - 1, + 1) to obtain, after integration by 

explicitly assembling this matrix (specifically, when this parts, 

assembly would require random access to a large array +I 

stored on disk), by using an element-by-element technique -& (w”&’ + 2 ct2w’qY’ + cf”W$b) 
with the element matrices being regenerated whenever j [ -1 

required. This will incur some additional computation, but 
should be economical unless an unusally large number of - {(U- a)(~‘& + u’wcj) + U’w# + U”wc+b} 1 dx = 0. 

matrix-vector multiplications is performed. (4.5) 

The mesh used in the discretization consists of the interior 
nodal points (i 1, i2, . . . . f,_,}, and 4 is expanded using 

4. TEST PROBLEMS AND 
Hermite cubic basis functions, 

EXPERIMENTAL RESULTS N-2 N-2 

d= C $jjr:+ 1 J;CLl, (4.6) 
/=I j= 1 

In this section, we describe two applications that were 
specifically programmed to evaluate the correctness and where { Jj, 4; > denote the nodal values and the derivatives, 
efficiency of the algorithm. The discretization methods used respectively, at the point ij. Since boundary layers will 
are standard, but specific to this work, and we give all the develop at the walls and along the centerline for large values 
relevant details for the sake of completeness. All numerical of R, the stretching transformation 
results and timings were obtained on a SUN 4/280 
workstation using an f77 FORTRAN compiler with full 
optimization. 

Zj = 6 sin2(7rxj/2), (4.7) 
- I’ 

ITERATIVE SCHEME FOR NONSYMMETRIC MATRIX PENCILS 135 



136 RAMESH NATAFCAJAN 

where xj is an equally-spaced partition of the interval 
(- 1, + l), is used to cluster nodes in the regions where 
large spatial gradients in the eigenvectors are expected. 

The use of Galerkin’s method with test functions w given 
by the set { Yi, o,>, followed by the evaluation of the 
various integrals in (4.5) by numerical quadrature on each 
element, leads to a matrix eigenvalue problem of the form 
(1.8), with matrices J and A4 of order 2N. 

Orszag [9] has given a list of the 30 least stable eigen- 
values for the case CI = 1, Re = 10,000, for perturbations to a 
base Poiseuille flow, which were computed using a spectral 
discretization in conjunction with the well-known QR algo- 
rithm (which is implemented in EISPACK). His results are 
shown plotted here in Fig. la. We briefly remark on the 
eigenvalue distribution for this problem. First, the real parts 
of all the eigenvalues lie in the interval (0.0, 1.0). Second, the 

eigenvalues with large negative imaginary parts all have 
their corresponding real parts clustered around a value of 3, 
which is the mean fluid velocity in the channel. For some- 
what larger values of the Im(a), there are two branches 
in the spectrum, consisting of the “slow” modes with 
Re(a)< 3, and the “fast” modes with Re(a)> 3. This 
structure can be seen in Fig. la. The eigenvalues of the slow 
modes are somewhat scattered, while those of the fast 
modes are seen to roughly lie on a straight line, inclined to 
the right from the vertical. The fast eigenvalues are in fact 
nearly degenerate (to the first few decimal places) and each 
corresponding point in Fig. la actually denotes a pair of 
eigenvaiues, whose eigenvectors are respectively symmetric 
and antisymmetric relative to the channel centerline. Orszag 
[9] apparently did not compute eigenvectors, but used the 
fact that the symmetric and antisymmetric modes decouple 
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FIG. 1. Partial eigenvalue spectrum for the Orr-Sommerfeld quation for a = 1, Re = 10,000: (a) 30 least stable eigenvalues reported by Orszag [9]. 
(b), (c), and (d) are the first 20 eigenvalues obtained from various different starting values with the present algorithm. 
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TABLE I 

Convergence History of the Computations for the 
Orr-Sommerfeld Equation 

Shift No. of inner 
value iteration 

No. of computed CPU 
eigenvalues seconds 

(0.0, 0.0) 12 10 128.9 
(0.523, -0.314) 12 1 67.8 
(0.663, - 0.303) 12 2 36.5 
(0.705, -0.281) 12 2 33.0 

in the original problem to obtain and identify these eigen- 
values from separate computations. 

Our computational results were obtained using a 
mesh with N= 201, with the following values for the 
various parameters in the algorithm, mdim = 30, ntot = 20, 
maxits = 12, stagits = 5. In Fig. lb, the eigenvalues that 
were computed starting from an initial shift (0.0,O.O) are 
shown, and the convergence history is summarized in Table I. 
A few remarks are necessary to place the entries of Table I 
in context. First, the time taken for the LU factorization is 
quite negligible for the small bandwidth matrix obtained in 
this problem. Second, the dominant contribution to the 
CPU time in the inner Arnoldi iteration is from the 
EISPACK routine COMQR2. This is reflected in the fact 
that the CPU time per iteration decreases with the size of 
the Arnoldi subspace, as more eigenvalues are computed. 
The decrease in the size of this subspace also explains why 
more iterations are required in the later stages of this algo- 
rithm in order to compute each additional eigenvalue. Note, 
however, that the combination of these two effects leads to 
the CPU time for obtaining each additional eigenvalue 
being quite uniform over the progress of the computation. 

a 
0.10 

0.05 

-0.05 

(4 
-0.10 j ’ 8 ’ * ’ ’ ’ ’ ’ ’ a 

-1.0 -0.5 0.0 0.5 1.0 

% 

Third, the computations that were performed with the third 
shift value had to be prematurely terminated after 10 inner 
Arnoldi iterations because of a perceived stagnation. 

There is excellent agreement (to several decimal places of 
accuracy) of our computed eigenvalues with the earlier 
results of Orszag [9]. In fact, we have found that one of our 
computed eigenvalues, located roughly at (0.21, - 0.199) in 
Fig. 1 b, to be inadvertently missing from the table of values 
reported by Orzag in his paper. The various numerals 
plotted in Figs. la-ld correspond to the locations of the 
shift values that were automatically generated by the 
routine, using a priority scheme in which prospective shift 
values were ranked by decreasing imaginary parts. We note 
that in spite of this heuristic, the algorithm was unable to 
uncover any of the fast modes, even though the direction of 
the movement of the shift values indicates that this might 
have happened if the algorithm had been allowed to 
compute a much larger number of eigenvalues. 

In order to obtain the fast eigenvalues (whose existence 
was of course known a priori, but in fact could have easily 
been ascertained by performing computations at smaller of 
R and extrapolating), the program was restarted with an 
initial shift (1.0, 0.0) and the results from this are shown in 
Fig. lc. As mentioned earlier, each point in this figure 
actually corresponds to a pair of nearly degenerate eigen- 
values. As a final check of the shift selection strategy, a 
starting shift of (0.67, -0.25) was used and the results are 
shown in Fig. Id. Again, the movement of the shifts is seen 
to be towards uncovering the least stable eigenvalue, 
although in this case, insufficient eigenvalues were com- 
puted for this strategy to proceed to completion. The 
eigenvalues that were obtained starting from this initial shift 
consist of a few fast modes and a few slow modes. 

The real and imaginary parts of the eigenvectors corre- 
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FIG. 2. Real and imaginary parts of the eigenvectors for the four least stable modes in Fig. lb: I. (0.237, 3.74 x lo-‘); 11. (0,277, -5.09 x 10-z); 
III. (0.349, -0.124), IV. (0.416, -0.138). 
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sponding to the four least stable eigenvalues in Fig. la are 
shown in Figs. 2a and 2b, respectively. The mode denoted I 
in 2a and b is slightly unstable, and this, along with the 
mode denoted III, is seen to be symmetric about the channel 
centerline. The modes II and IV, on the other hand, are seen 
to be antisymmetric. The slow modes are spatially uniform 
over much of the interior of the channel, but show boundary 
layer-like behavior at the walls, with the corresponding 
variations being rather more pronounced for the higher 
modes. Similarly, the eigenvectors corresponding to the four 
least stable fast modes are shown in Fig. 3a and b. Here, 
modes I and IV are seen to be antisymmetric, while modes 
II and III are symmetric. These modes are spatially uniform 
in the wall region but show a critical layer-like behavior in 
the region close to the channel center line. 

B. Chemical Reactor Equations 

The time-dependent behavior of a non-adiabatic tubular 
reactor is described by the following equations given in 
dimensionless form [S] 

62 1 a35 ah 
-=-z-~-gdY,,Y*)9 at Pe, ax (4.8) 

Le$=&g-g-g,(y,, y2), (4.9) 
2 

where y, and y, are the dimensionless reactant conversion The discretization of (4.8)-(4.9) is carried out using 
and temperature, respectively. The functions g, for a tem- piecewise continuous biquadratic basis functions Qi(x), 
perature-dependent, first-order reaction, and g, for the defined on 3-node elements, and Galerkin’s method is used 

a 0.10 

0.05 

z 
Y 0.00 
B; 

-0.05 

-0.10 _ 

combination of the heat transfer through the walls and th 
heat of reaction, are respectively given by 

g,=Da.v,exp y+I , 
( > Y2 

(4.10 

g2=/3(y2- 1)-BDay, exp y+l . 
( > 

(4.11 
Y2 

At the reactor inlet and exit, y, and y, are assumed to satisf 
Dankwerts’ boundary conditions, given by 

x = 0; ah 
~=pel(Y, - 11, 

aY2 
z = Pe2(.v2 - 11, 

(4.12 

x= 1; ah aY2 -g=o, z==o, (4.13 

The various parameters appearing in the model are the 
Peclet numbers for heat and mass transport Pe, and Pe,. 
the Lewis number Le, the Damkohler number Da, the 
dimensionless activation energy y, the dimensionless heat 01 
reaction B, and the dimensionless heat transfer coefficient B, 
Some simplifying assumptions are made in the most general 
model, such as taking the reactor inlet and wall tem- 
peratures to be equal, which allow us to compare our results 
with those of Roose [ 111. 
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FIG. 3. Real and Imaginary parts of the eigenvectors for the four least stable modes in Fig. lc: I. (0.9646, -3.52 x lo-‘); II. (0.965, -3.52 x 10-2); 
III. (0.936, -6.32 x 10-2); IV. (0.936, -6.32 x 10m2). 
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FIG. 4. Exit values ofy, and yz obtained by solving for the stationary solutions of (4.8t(4.13). The problem parameters are Pee, = Pepez = 5.0, y = 25.0, 
p = 0.5. 

to obtain the numerical discretization from the weak form As a result, the simple continuation procedure breaks down 
of (4.8) and (4.9). The details of the method used to solve for for /I < 3.5, with multiple solutions appearing for inter- 
the stationary equations and to compute the eigenvalues of mediate values of Da between these two limit points. Alter- 
the perturbation equations closely follow the earlier descrip- native methods based on arc-length continuation could 
tion in Section 1, and these details are therefore omitted have been used to extend the computation to values of 
here for the sake of brevity. B < 3.5, but this was not pursued here. 

Our results were obtained for the following values of the For each value of the continuation parameter Da, after 
problem parameters, Pe, = Pe, = 5.0, y = 25.0, B = 0.5. The computing a converged stationary solution, the Arnoldi 
value of /I was varied in the range (3.5, 4.0), and, at each routine was used to obtain a few of the most unstable 
value of b, solutions were computed using Da as a continua- eigenvalues of the discretized perturbation equations. The 
tion parameter. In Fig. 4, the reactor exit values are shown various parameters for the Arnoldi routine were mdim = 20, 
plotted for values of Da between 0.15 and 0.35. The curve for ntot = 12, to1 = lo- lo, maxits = 8, stagits = 5. In this 
/I = 3.5, in particular, shows a tendency towards forming a problem, a good shift value can always be estimated from 
“neck” in the region where two limit points begin to appear. the preceding computations, and a single shift is often 
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FIG. 5. The spatial form of the stationary solutions for (a) y, and (b) y,, at the lower and upper Hopf bifurcation points (denoted by I and II, 
respectively). 
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FIG. 6. The spatial form of the (a) real and (b) imaginary parts of the unstable eigenvector perturbation to y, at the lower and upper Hopf points 
(denoted by I and II, respectively). 

enough to compute all the required eigenvalues. For the 
parameter values used in the present problem, each Newton 
iteration for computing the steady solution took about 0.45 
CPU seconds, with typically 45 iterations for the required 
convergence from a good starting guess. The computation 
of the 12 leading eigenvalues and two leading eigenvectors 
took about 53 CPU seconds. Here the first and second 
Arnoldi iterations required 13 and 8 CPU seconds, respec- 
tively, while each subsequent iteration required about 
5 CPU seconds (the fraction of the CPU time in the matrix 
factorization and the eigenvector computation was quite 
negligible). In this example, 10 of the 12 computed eigen- 
values were typically obtained in the first three inner 
Arnoldi iterations. This observation could have been used 
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Y 0.c 
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-0.1 

to reduce the computational costs by over a factor of two. 
without a great loss of information from the point of view 01 
the application. 

By monitoring the least stable eigenvalue during the 
parameter continuation with Da, it was possible to obtain s 
coarse estimate of the interval containing a bifurcation. Thi: 
coarse estimate was subsequently relined using interva: 
bisection in the usual way (this procedure can be easily 
automated for a “production” application). In this way, the 
two Hopf bifurcation points, termed Da, and Da, were 
computed for each value of B in the range (3.5,3.8). These 
values along with the magnitude of the imaginary part of the 
bifurcation eigenvalues are listed in Table II. Detailed 
calculations for other values of B were not pursued. 
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FIG. 7. The spatial form of the (a) real and (b) imaginary parts of the unstable eigenvector perturbation to y2 at the lower and upper Hopf points 
(denoted by I and II, respectively). 
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TABLE II 

Values of the Critical Damkohler Number at the Upper 
and Lower Hopf Points for Various 1, Pe, = Pe, = 5.0, 
y = 25.0, B = 0.5 

B 

3.5 
3.6 
3.1 
3.8 

Lower Hopf point Upper Hopf point 

Dal Ma,) Da, Wa,) 

0.2164 1.552 0.2952 5.38 
0.2701 1.599 0.3078 5.53 
0.2789 1.645 0.3206 5.68 
0.2876 1.698 0.3337 5.84 

In Fig. 5, we show the stationary reactor profiles for the 
conversion and temperature in the case /3 = 3.5 at the two 
Hopf bifurcation points. These profiles are fairly uniform at 
Da,, but for Da,, steep variations are found in the entrance 
region of the reactor where most of the reactant undergoes 
rapid conversion. The real and imaginary parts of the bifur- 
cating eigenvectors are shown in Fig. 6 for the conversion, 
and in Fig. 7 for the temperature. Since the bifurcating solu- 
tion in this case will appear in the form of a standing time- 
dependent oscillation, the shape of the modes giving an idea 
of the location in the reactor where these oscillations might 
be expected to have the largest relative amplitude. The 
absolute magnitude of the amplitudes of the bifurcating 
solutions, however, requires a further nonlinear analysis, 
and cannot be obtained from the present approach alone. 

5. SUMMARY 

A procedure for obtaining the partial eigenspectrum of 
large sparse matrix eigenvalue problems arising in finite 
element stability applications has been described. The 
underlying algorithm is that of Saad [12] but has been 
modified in some ways to tailor the implementation for this 
set of applications. The method has been used to study two 
test problems, which are apparently small, but whose solu- 
tion using standard eigenvalue software would have yielded 
the present results much less economically. This perfor- 
mance gap will increase dramatically for larger problems, 
more so, in the context of an implementation on a vector or 
parallel computer. 

In the earlier related work, there has been an emphasis on 
developing methods for “filtering” the starting vector for 
Arnoldi’s method (or any other equivalent Krylov subspace 
based eigenvalue algorithm) so that this starting vector is 
rich in the component of the most desired eigenvector. The 
algorithms that have been proposed for performing this 
filtering include for example, a time-integration of the 
transient version of the eigenvalue problem [ 1,4], and 
Chebyshev preconditioning [ 12,6]. Although we have not 
experimented extensively with either technique, the former 

requires the specification of various parameters such as the 
integration step size, integration time span, etc., which must 
be separately estimated for each application. More impor- 
tantly, however, the effectiveness of these various filtering 
schemes is diminished by the fact that further amplification 
of this eigenvector is not necessarily favored in Arnoldi’s 
method, which can in fact undo all the work invested in the 
filtering in the first place. The approach taken in this paper, 
on the other hand, has been to emphasize the use of a shift 
selection technique in order to force the convergence of the 
desired eigenvalues. 

From our experiments, we have concluded that by 
reorthogonalizing the Arnoldi subspace against the com- 
puted invariant subspace, an effective and stable way of 
computing a reasonable number of eigenvalues is obtained, 
without the appearance of “duplicates” and without an 
excessive number of matrix factorizations. The use of this 
scheme for computing a large number of eigenvalues can 
lead to some difficulty, since any error in the computation 
of the first few eigenpairs will affect the accuracy and con- 
vergence of all subsequent eigenpairs. It is possible, there- 
fore, that because of this limitation, the most desired eigen- 
values in a given application cannot be extracted from a 
particular starting shift. A simple remedy is to reinitialize 
the program with a different starting shift. We have 
described some heuristics for the shift selection that can 
reduce the possibility of this happening for our applications, 
but a fully satisfactory automatic procedure is difficult to 
obtain in any scheme that attempts to infer the global dis- 
tribution of the eigenvalues from the computation of a small 
subset. In practice, however, a rough idea of the eigenvalue 
distribution can be inferred by extrapolating from a com- 
putation on either a coarse mesh or at a nearby set of 
problem parameter values. Furthermore, this extrapolation 
does not have to be particularly accurate, since the 
present scheme will always compute a reasonable number 
of eigenvalues at each step, and doing this in conjunction 
with the automatic shift selection procedure will provide 
a good assurance that any “overtaking” modes do not go 
inadvertently unidentified. 
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